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Introduction
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Motivation: Survey, monitoring, or interception applications require:

• approaching target as closely as possible,

• while guaranteeing a minimum safe standoff distance,

• global tracking stability with minimal computational effort,

• and dynamically feasible control inputs for underactuated surface vessels.

Approach: Use of Control Barrier Functions
2 / 18



Problem Formulation

η̇ = J(η)v ,
Mv̇ = −C (v)v − D(v)v + τ .
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Control Objective: Stable trajectory
tracking and target approach for
underactuated USVs.
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Candidate Lyapunov Functions

Consider the nonlinear system

ẋ = f (x) + G (x)u, (1)

which is affine in the control input.
Lyapunov Stability Theorem
Suppose there is a function

V (x) > 0, ∀x ∈ D, x ̸= 0,

where

V̇ (x) < 0, ∀x ∈ D, x ̸= 0,

then (1) is asymptotically stable.

Set of points in V shrinks in time since V̇ < 0.
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Standard Control Barrier Functions

Safe Set (convex)

C = {x ∈ D ⊂ Rn : B(x) ≥ 0},

∂C = {x ∈ D ⊂ Rn : B(x) = 0},

Int(C) = {x ∈ D ⊂ Rn : B(x) > 0},

Control Barrier Function
B is a CBF if

sup
u∈U

[
∂B

∂x
f +

∂B

∂x
Gu

]
≥ −α(B(x)) (2)

Use of α(·) (a K∞ function) keeps safe set
from shrinking.

B(x) > 0

B
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Safe Set C

B(x) < 0
x0(t)x(t)

x(0)

Theorem: If B(x) is a CBF, any
locally Lipschitz continuous u
satisfying (3) renders C safe for (1).
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Relaxed Control Barrier Functions

Consider system (1) and safe set C. A class C 1

function B : D × D → R, where D ⊂ Rn, is a
relaxed control barrier function if:

1 B(x̃ , x̃0) ≥ 0 for all x̃0 ∈ C.
2 B is proper, i.e. {x̃ , x̃0 | B(x̃ , x̃0) ≤ L} is

compact for any L ≥ 0.

3 For any continuous uc ∈ Rm, there exist
non-negative constants α, β ≥ 0, so that

inf
uc∈Rm

Ḃ = inf
uc∈Rm

[
∂B

∂x̃
· ˙̃x +

∂B

∂x̃0
· ˙̃x0

]
,

< αB(x̃ , x̃0) + β.
(3)

The trajectory tracking safety-critical
control input is designed by solving the
optimization problem

min
uc

∥uc − ut∥2, (4a)

s.t. Ḃ − αB(x̃ , x̃0)− β < 0. (4b)
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Trajectory Tracking Safety-Critical Controller

Consider system (1). Let ut be a trajectory tracking control input,

I :=

(
∂B

∂x̃
+
∂B

∂x̃0

)
· [f (x) + g(x)ut ]−

∂B

∂x̃
· ẋd − ∂B

∂x̃0
· ẋ0, (5)

LgB :=

(
∂B

∂x̃
+
∂B

∂x̃0

)
· g(x), (6)

and
J := αB(x̃ , x̃0) + β. (7)

The control input

uc =


ut , I ≤ J,

ut − (I − J)
LgB

T

∥LgB∥2
, I > J,

(8)

is the solution of the optimal control Problem (4).
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Control Design: Underactuated USV

Tracking errors: x̃ = x − xd and ỹ = y − yd

Distance to target: x̃0 := x − x0 and ỹ0 := y − y0

Approach:

1 underactuated USV can apply both a surge force and yaw moment, but cannot
directly apply a force in the sway direction

2 motion in the sway and yaw directions coupled via the added mass terms

3 use coupling to find yaw moment τψ required for virtual control input ṙc that
relates yaw acceleration to the sway acceleration, such that commanded control
inputs dynamically feasible.

4 control design includes two backstepping stages + Dynamic Surface Control
• design kinematic position tracking controller → virtual control inputs
• design physical control inputs taking nonholonomic second order (acceleration)

constraints into account
• use DSC to compute time derivatives of virtual control inputs
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Control Design: Kinematic Controller

Take virtual control inputs to be

ẋt = −kx x̃ + ẋd (9)

and
ẏt = −ky ỹ + ẏd , (10)

where kx > 0 and ky > 0 are constants.
Trajectory tracking control input (virtual) is given by ut = [ut vt ]

T , where

ut = ẋt cosψ + ẏt sinψ,

vt = −ẋt sinψ + ẏt cosψ.
(11)
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Control Design: Safety-Critical Kinematic Controller

Use modified form of relaxed CBF proposed by Igarashi & Nakamura (2018), take

B(x̃ , x̃0) =
1

2

 1[
∥x̃0∥1/k − ∥x̃0∥1/kmin

] + x̃T x̃

 , (12)

where k selected to modify agressiveness of safety critical controller as the USV
approaches safety “barrier” located at ∥x̃0∥ = ∥x̃0∥min.
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Control Design: Safety-Critical Kinematic Controller

Kinematic equation of motion for the virtual control inputs uc and vc is[
ẋc
ẏc

]
=

[
cosψ − sinψ
sinψ cosψ

] [
uc
vc

]
. (13)

Virtual tracking control inputs are in the control affine form of (1) with f (x) = 0 and
G = g(ψ), where

g(ψ) =
[

cosψ − sinψ
sinψ cosψ

]
. (14)
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Control Design: Dynamic safety-critical tracking control

To determine physical control inputs τx and τψ that generate virtual control input uc ,
define velocity error surfaces ũ := u − uc , ṽ := v − vc and r̃ := r − rc .
Take virtual control input ṙc and physical control inputs τx and τψ to be

ṙc =
aψ
ay

[−kv ṽ − fy + v̇c ] + fψ,

τx = m11 [−kuũ − fx + u̇c ] ,

τψ =
m33

aψ
[−kr r̃ − fψ + ṙc ] ,

(15)

where ku > 0, kv > 0 and kψ > 0 are constants.
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Control Design: Dynamic Surface control

ûc and v̂c filtered estimates of uc and vc
Let ũ := u− ûc , ṽ := v − v̂c , ũc := ûc − uc and
ṽc := v̂c − vc .
Use exact expression for ṙc →, r̃ := r − rc , as
before.
Now, take the virtual control input ṙc and
physical control inputs τx and τψ to be

ṙc =
aψ
ay

[
−kv (v − vc)− fy + ˙̂vc

]
+ fψ,

τx = m11

[
−ku (u − uc)− fx + ˙̂uc

]
,

τψ =
m33

aψ
[−kr (r − rc)− fψ + ṙc ] .

(16)

Closed loop error system for the
dynamics of the system is

˙̃u = −kuũ − kuũc ,

Td
˙̂uc = −ũc ,

˙̃v = −kv ṽ − kv ṽc ,

Td
˙̂vc = −ṽc ,

˙̃r = −kr r̃ ,

(17)

where Td ∈ (0, 1) is filter time
coefficient of the filter and ûc(0) = 0
and v̂c(0) = 0.
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Representative Simulations

• Desired trajectory straight-line
constant speed 1.4 m/s

• Control parameters manually tuned

Parameter Value
α 0.75

β 1

k 5

kx , ky 0.5

ku, kv , kr 0.075

a 0.5

∥x0∥min 5.0

Td 0.01
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Representative Simulations

• Desired trajectory straight-line
constant speed 1.4 m/s

• (Same) manually tuned control
parameters

Parameter Value
α 0.75

β 1

k 5

kx , ky 0.5

ku, kv , kr 0.075

a 0.5

∥x0∥min 5.0

Td 0.01
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Representative Simulations

-25 0 25
-25

0

25

5

6

7

1

4

2
3

-20 -10 0 10 20

-20

-10

0

10

20

16 / 18



Comparison with Nonlinear MPC
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Concluding Remarks

• Proposed trajectory tracking safety-critical controller for closest safe approach by
an underactuated USV with nonholonomic dynamic (acceleration) motion
constraints

• analytical solution to the optimization problem, instead of online optimization –
computationally lightweight

• modification of relaxed control barrier function of Igarashi & Nakamura (2018),
permits the safety critical control to start acting sooner and more gradually

• not as smooth/precise as MPC, but much simpler to configure and less
computationally intense

• Future work:
• Backstepping leads to a nonlinear PD controller – opens possibility of robust

approaches
• reduce actuator saturation when the safety-critical controller is deactivated
• extend the proposed approach to handle model uncertainty, exogenous disturbances

and multiple targets
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